<<12345>>
11.

Let   $f(x)= 7\tan^{8}x+7\tan^{6}x-3\tan^{4}x$ $x-3\tan^{2}x$   for all   $x\epsilon (-\frac{\pi}{2},\frac{\pi}{2})$  , Then the correct expression (s) is /are

 

            


A) $\int_{0}^{\pi/4}x f(x)dx=\frac{1}{12}$

B) $\int_{0}^{\pi/4} f(x)dx=0$

C) $\int_{0}^{\pi/4}x f(x)dx=\frac{1}{6}$

D) $\int_{0}^{\pi/4} f(x)dx=1$



12.

 Let f.g:[-1,2]→  R,  be continuous  functions which are twice differentiable  on the interval (-1,2) . Let the values  of f and g at the points -1,0 and 2 be as given in the following table .

1132021436_m2.JPG

 In each of the intervals (-1,0) and (0,2), the function (f-3g)" never  vanishes. Then the correct statement(s) is/are


A) f'(x)-3g'(x)=0 has exactly three solutions in $(-1,0)\cup (0,2)$

B) f'(x)-3g'(x)=0 has exactly one solution in (-1,0)

C) f'(x)-3g'(x)=0 has exactly one solution (0,2)

D) f'(x)-3g'(x)=0 has exactly two solution in (-1,0) and exactly two solutions in (0,2)



13.

 For any integer k, let $\alpha_{k}=\cos \left(\frac{k\pi}{7}\right)+i\sin \left(\frac{k\pi}{7}\right)$ , where  $i=\sqrt{-1}$ . The value of the expression  $\frac{\sum_{k=1}^{12}|\alpha_{k+1}-\alpha_{k}|}{\sum_{k=1}^{3}|\alpha_{4k-1}-\alpha_{4k-2}|}=\frac{12(a)}{3(a)}$  is 

   


A) 2

B) 5

C) 4

D) 6



14.

Suppose  that p,q, and r  three non-coplanar vectors  in R3. Let  the components of a vector  s along p,q and r be 4,3 and 5  , respectively. If the components  of this vector  s along    (-p+q+r)  (p-q+r)  and (-p-q+r)  are x,y and z respectively, then the value of 2x+y+z is 


A) 8

B) 9

C) 12

D) 4



15.

 Let f:R→ R be a continuous  odd function, which vanishes exactly  at one point   $f(1)=\frac{1}{2}$ . Suppose that $F(x)=\int_{-1}^{x} f(t) dt $    for all x ε [-1,2] and    $G(x)=\int_{-1}^{x}t|f\left\{ f(t)\right\}|dt$ for all  x ε [-1,2] If   $\lim_{x \rightarrow 1}\frac{F(x)}{G(x)}=\frac{1}{14}$ , then the value of    $f(\frac{1}{2})$  is


A) 7

B) 4

C) 8

D) 6



<<12345>>