Answer:
Option A,B
Explanation:
Here, f(x)=7tan8x+7tan6x−3tan4x−3tan2x
For all x (−π2,π2)
∴ f(x)= 7\tan^{6}x \sec^{2}x-3\tan^{2}x \sec^{2}x
= (7\tan^{6}x-3\tan^{2}x)\sec^{2}x
Now, \int_{0}^{\frac{\pi}{4}} x f(x) dx=\int_{0}^{\frac{\pi}{4}} x(7\tan^{6}x-3\tan^{2}x)\sec^{2}x dx
= \left[ x(\tan^{7}x-\tan^{3}x)\right]_0^{\pi/4}
- \int_{0}^{\pi/4} 1(tan^{7}x-\tan^{3}x)dx
= 0- \int_{0}^{\pi/4} tan^{3}x(tan^{4}x-1)dx
= -\int_{0}^{\pi/4} tan^{3}x(tan^{2}x-1)\sec^{2}xdx
Put tan x=t \Rightarrow \sec^{2}x dx=dt
\therefore \int_{0}^{\pi/4}x f(x)=-\int_{0}^{1} t^{3}(t^{2}-1)dt
=\int_{0}^{1} (t^{b}-t^{5})dt=\left[\frac{t^{4}}{4}-\frac{t^{5}}{5}\right]_0^1=\frac{1}{4}-\frac{1}{6}=\frac{1}{12}
Also,
\int_{0}^{\pi/4} f(x) dx= \int_{0}^{\pi/4} (7\tan^{6}x-3\tan^{2}x)\sec^{2}x dx
= \int_{0}^{1} (7t^{6}-3t^{2}) dt=\left[t^{7}-t^{3}\right]_0^1=0
-